## Agenda

## General

- Announcement: Homework plan
- Grades: on Brightspace this week
- Grades: must submit before class for your submission to 'count'

Class Focus

- short review
- grammar of graphics!
- ggplot introduction
- Scatterplots \& bivariate data


## What did we learn last week?

- How to use data.table for quick assessments of the data
- How this relates to tidy data
- The difference between wide and long data
- How to understand what makes a graphic effective


## Golden Rules

1) less is more!
2) data is the focus
3) focus on one idea at a time
4) be clear about the idea you want to convey

## Golden Rules



1) Don't use two axes
2) Label axes
3) No sentences in charts
4) Focus on important info / simplify
5) Minimize extraneous color usage

## Golden Rules

```
- Pick the Right type of graph
- Relevant data only
- Consistent Scale/appropriate axis
- Color 3 conTrast for emphasis
- if not important, Kich1t. out
- have lots of fun
```

1) pick the Right type of graph
2) relevant data only
3) consistent scale /appropriate axes
4) color and contrast for emphasis
5) if not important, kick it out
6) have lots of fun

Golden Rules

1. One $y$-axis
2. No text in figure body
3. Embrace negative space
4. Keep message simple
5. Reduce dimensions
6. Be honest with scales
1) one $y$-axis
2) no text in figure body
3) embrace negative space
4) keep message simple
5) reduce dimensions
6) be honest with scales

Species$\square$ setosa $\qquad$ versicolor $\qquad$ virginica

## Introduction

to ggplot

## Week 3, day 1 EDA <br> Dr. Dorff


cyl $\square 4 \square 6 \square 8$



| Species | length | mean | sd |
| :---: | :---: | :---: | :---: |
| setosa | 50 | 5.01 | 0.352 |
| versicolor | 50 | 5.94 | 0.516 |
| virginica | 50 | 6.59 | 0.636 |

iris data set gives the measurements in cm of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3
species of iris. The species are Iris setosa, versicolor, and virginica.

## Wilkinson's Grammar of Graphics

- A good grammar will allow us to gain insight into the composition of complicated graphics, and reveal unexpected connections between
 seemingly different graphics


## What Is The Grammar Of Graphics?

- Building blocks of a graph include:
- data
- aesthetic mapping
- geometric object
- statistical transformations
- scales
- coordinate system
- position adjustments
- faceting


## (1) START WITH THE DATßA

Table 1. Simple dataset.

| A | B | C | D | $x$ | $y$ | Shape |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | a | 2 | 4 | a |
| 1 | 2 | 1 | a | 1 | 1 | a |
| 4 | 5 | 15 | b | 4 | 15 | b |
| 9 | 10 | 80 | b | 9 | 80 | b |

Mapped to aesthetics for a graph

## $x \quad y \quad$ Shape

## (2) SCALES \& SHAPES


variables mapped into aesthetic space.
geometric objects, scales and coordinate system, plot annotations.



## layered grammar (revisited)

- a default dataset and set of mappings from variables to aesthetics
- one or more layers, with each layer having one geometric object
- one statistical transformation
- one scale for each aesthetic mapping used
- a coordinate system
- the facet specification.


THESE ARE LAYERS!

